端到端平台组装多个层是为精确认识大脑活动而构建的。是大规模的脑电图(EEG)数据,时间频谱图被典型地投射到插曲特征特征上(被视为tier-1)。基于尖峰的神经网络(SNN)的层旨在根据稀有特征从稀有特征中提取启动信息,该特征保持了脑电图本质的时间范围。所提出的层3从snn转移峰值图案的时间和空间域;并将转置模式 - 纳入将被称为Tier-4的人工神经网络(ANN,Transformer)馈入,其中提出了一种特殊的跨性拓扑结构,以匹配二维输入形式。在此过程中,诸如分类之类的认知是高精度进行的。为了证明概念验证,通过引入多个脑电图数据集,其中最大的42,560小时记录了5,793名受试者,可以证明睡眠阶段评分问题。从实验结果中,我们的平台通过利用唯一的脑电图来实现87%的总体认知准确性,这比最新的脑电图高2%。此外,我们开发的多层方法论通过识别关键发作来提供脑电图的时间特征的可见和图形化,这是神经动力学中授予的,但在常规认知方案中几乎没有出现。
主要关键词